Estimating changes in metabolic power from EMG
نویسندگان
چکیده
Metabolic rates can increase 21 times above resting levels during cycling with the majority attributed to muscular contractions. Metabolic estimates attained through gas exchange parameters are limited by the respiration rate and time delay with respect to these contractions. In contrast surface electromyography (EMG) contains instantaneous muscle contraction information at higher temporal resolutions. An adequate metabolic power-EMG relationship has not been established to use EMG as a metabolic estimate during dynamic activities. The purpose of this study was to establish a metabolic power-EMG relationship during non steady-state conditions. Participants cycled at workloads between 25 and 90% O2max while EMG and gas exchange were monitored. The EMG was resolved into intensities and total EMG intensity was calculated as the sum of intensities across all muscles for each pedal cycle. Metabolic power was estimated from gas exchange parameters and the mean total EMG intensity between breaths was calculated and used as breath-by-breath values. Comparisons were made between breath-by-breath resolutions of metabolic power and total EMG intensity. Different weighting coefficients were also applied to the EMG for each muscle to analyze the effects of different muscle weightings on metabolic power estimations. There was a significant correlation (r = 0.91) between estimates of metabolic power from EMG and gas exchange. Muscle weighting had a significant effect on metabolic power determination with the highest and lowest correlated estimates having the largest weightings on muscles proximal and distal to the knee respectively. This study demonstrates that EMG contains important information about the metabolic costs of muscle contractions and provides good predictions of metabolic changes during non steady-state conditions. Also, the importance of each muscle is workload dependent with inappropriate weightings reducing metabolic estimations. These findings have implications for future EMG applications as they provide more immediate, higher temporal resolution predictions of changes in metabolic power.
منابع مشابه
Muscle coordination is key to the power output and mechanical efficiency of limb movements.
The purpose of this study was to determine which features of muscle mechanics and muscle coordination affect the power output from a limb during locomotion. Eight subjects were tested while cycling at maximum exertion for 25 min on a stationary dynamometer. Cadence and load were varied to span a range of power outputs and myoelectric activity was measured from 10 muscles in the leg. Cycle-by-cy...
متن کاملAn Android Application for Estimating Muscle Onset Latency using Surface EMG Signal
Background: Electromyography (EMG) signal processing and Muscle Onset Latency (MOL) are widely used in rehabilitation sciences and nerve conduction studies. The majority of existing software packages provided for estimating MOL via analyzing EMG signal are computerized, desktop based and not portable; therefore, experiments and signal analyzes using them should be completed locally. Moreover, a...
متن کاملThe relationships among endurance performance measures as estimated from VO2PEAK, ventilatory threshold, and electromyographic fatigue threshold: a relationship design
BACKGROUND The use of surface electromyography has been accepted as a valid, non-invasive measure of neuromuscular fatigue. In particular, the electromyographic fatigue threshold test (EMG(FT)) is a reliable submaximal tool to identify the onset of fatigue. This study examined the metabolic relationship between VO(2PEAK), ventilatory threshold (VT), and the EMGFT, as well as compared the power ...
متن کاملMuscle- and Mode-Specific Responses of the Forearm Flexors to Fatiguing, Concentric Muscle Actions
Background: Electromyographic (EMG) and mechanomyographic (MMG) studies of fatigue have generally utilized maximal isometric or dynamic muscle actions, but sportand work-related activities involve predominately submaximal movements. Therefore, the purpose of the present investigation was to examine the torque, EMG, and MMG responses as a result of submaximal, concentric, isokinetic, forearm fle...
متن کاملEffects of strength training on muscle fatigue mapping from surface EMG and blood metabolites.
PURPOSE this study examined the effects of heavy resistance training on the relationships between power loss and surface EMG (sEMG) indices and blood metabolite concentrations on dynamic exercise-induced fatigue with the same relative load as in pretraining. METHODS twelve trained subjects performed five sets consisting of 10 repetitions in the leg press, with 2 min of rest between sets befor...
متن کامل